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Several brain diseases are characterized by abnormal neuronal synchronization. Desyn-
chronization of abnormal neural synchrony is theoretically compelling because of the com-
plex dynamical mechanisms involved. We here present a novel type of coordinated reset
(CR) stimulation. CR means to deliver phase resetting stimuli at different neuronal sub-
populations sequentially, i.e. at times equidistantly distributed in a stimulation cycle. This
uniform timing pattern seems to be intuitive and actually applies to the neural network
models used for the study of CR so far. CR resets the population to an unstable cluster
state from where it passes through a desynchronized transient, eventually resynchronizing
if left unperturbed. In contrast, we show that the optimal stimulation times are nonuniform.
Using the model of weakly pulse-coupled neurons with phase response curves, we provide
an approach that enables to determine optimal stimulation timing patterns that substantially
maximize the desynchronized transient time following the application of CR stimulation.
This approach includes an optimization search for clusters in a low-dimensional pulse cou-
pled map. As a consequence, model-specific non-uniformly spaced cluster states cause
considerably longer desynchronization transients. Intriguingly, such a desynchronization
boost with non-uniform CR stimulation can already be achieved by only slight modifica-
tions of the uniform CR timing pattern. Our results suggest that the non-uniformness of
the stimulation times can be a medically valuable parameter in the calibration procedure
for CR stimulation, where the latter has successfully been used in clinical and pre-clinical
studies for the treatment of Parkinson’s disease and tinnitus.

Keywords: desynchronization, pulse coupled neurons, coordinated reset stimulation, phase response curve,

stimulation timing, cluster states

1 INTRODUCTION
Pathological neuronal synchronization is a hallmark of several
neurological disorders like Parkinson’s disease (PD), essential
tremor, tinnitus, or epilepsy (Lenz et al., 1994; Nini et al., 1995;
Kane et al., 2009; Schnitzler et al., 2009; Weisz et al., 2005, 2007;
Roberts et al., 2010; Mormann et al., 2000), whereas the neu-
ronal firing is uncorrelated in the normal state (Nini et al., 1995;
Wilson et al., 2004) such that the abnormal synchronization is
associated with pathology and symptoms (Levy et al., 2000). The
standard therapy for medically refractory PD patients is electri-
cal deep brain stimulation (DBS), where a high-frequency (HF,
>100 Hz) electrical pulse train is administered to target brain
areas via chronically implanted depth electrodes (Benabid et al.,
1991). HF DBS is found to significantly alter the neuronal activity
of the stimulated neurons: The neuronal firing can be suppressed
in the vicinity of the stimulation electrode,whereas the neurons are
overactivated in the output structures of the stimulated neuronal
population such that the pathological firing pattern is changed,
see (Deniau et al., 2010) for review.

The mechanism of HF DBS is not fully understood. The mod-
eling study (Wilson et al., 2011) suggests that the HF periodic DBS

may induce a chaotic desynchronization, while a desynchronizing
impact of a periodic forcing on synchronized populations seems to
be a rather general phenomenon (Popovych and Tass, 2011). Also,
as shown computationally, the effect of HF DBS strongly depends
on the target structures stimulated (Hauptmann and Tass, 2007):
Delivering HF DBS (nearly) exclusively to excitatory target
structures may cause a desynchronization, whereas a stronger
involvement of inhibitory target structures typically causes a
pronounced inhibition. In some patients, however, HF DBS
may be ineffective or cause side effects (Limousin et al., 1999;
Kumar et al., 2003; Volkmann, 2004; Rodriguez-Oroz et al., 2005;
Freund, 2005). Accordingly, along the lines of a model-based
approach (Tass, 1999) novel stimulation techniques have been
developed (Tass, 2001a, 2003a,b; Rosenblum and Pikovsky, 2004;
Hauptmann et al.,2005; Popovych et al.,2005,2006; Pyragas et al.,
2007; Popovych and Tass, 2010), which selectively counteract the
pathological synchronization and restore uncorrelated neuronal
firing. They are based on either phase resetting or feedback
approaches, where the latter can have a great potential in con-
trolling pathological synchronization and await for technical
realization.
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Other methods suggest to stimulate a single oscillator in the
network (Nabi and Moehlis, 2011), drive the neurons into a phase-
less set in order to achieve desynchronization (Danzl et al., 2009),
or focused on the optimization of the standard HF DBS via a
closed-loop stimulation setup (Feng et al., 2007a,b). In monkeys
rendered parkinsonian with the neurotoxin MPTP Rosin et al.
(2011) studied closed-loop DBS under acute conditions. To this
end, they delivered a short train (comprising 7 pulses at 130 Hz)
through a pair of electrodes located in the Globus pallidus inter-
nus (GPi) at a predetermined, fixed latency (80 ms) following each
action potential recorded through an electrode placed in the pri-
mary motor cortex (M1). This type of stimulation caused a strong
decrease of the firing rate of the pallidal neurons together with a
pronounced decrease of the oscillatory neuronal activity at tremor
frequency (4-7 Hz) and at double tremor frequency (9-15 Hz)
along with an amelioration of the MPTP-induced akinesia. After
cessation of this type of closed-loop DBS the initial firing pat-
tern reverted back, i.e. pallidal firing rate and pallidal oscillatory
activity attained pre-stimulus levels (Rosin et al., 2011). In con-
trast, standard continuous 130 Hz DBS caused a less pronounced
decrease of the pallidal firing rate, the oscillatory neuronal activity
and the amelioration of the akinesia (Rosin et al., 2011).

In contrast to the closed-loop DBS tested by Rosin et al.
(2011), CR stimulation can be performed in a closed-loop or
an open-loop mode (Tass, 2003a,b). For instance, an adapta-
tion of the stimulation frequency to the dominant frequency of
the pathological neuronal synchronized collective oscillation can
increase its efficacy (Tass, 2003a,b), see also (Tass et al., 2009).
However, CR stimulation is robust with respect to variations of
both stimulation and model parameters as follows from both
computational as well as pre-clinical and clinical studies (Tass,
2003b; Tass et al., 2012a,b). More importantly, the goal of the
CR approach is fundamentally different. CR stimulation does not
aim at a decrease of firing rates and/or an abolishment of oscil-
latory neuronal activity. Rather, CR stimulation aims at specifi-
cally counteracting pathological synchrony by desynchronization
(Tass, 2003a,b). This is because neurons have to be active in order
to unlearn their pathological synaptic connectivity. In this way a
sustained long-lasting desynchronization is enabled and therapeu-
tic effects as observed computationally (Tass and Majtanik, 2006;
Hauptmann and Tass, 2007; Tass and Popovych, 2012), in rat hip-
pocampal slice experiments in the context of epilepsy (Tass et al.,
2009) as well as in a clinical proof of concept study in tin-
nitus patients treated with acoustic CR stimulation (Tass et al.,
2012a). In addition, in parkinsonian (MPTP) monkeys it was
shown that unilateral CR stimulation delivered to the subtha-
lamic nucleus (STN) for only two hours per day during five
days leads to significant and sustained therapeutic aftereffects
for at least 30 days, while standard 130 Hz DBS has no after-
effects (Tass et al., 2012b). Another motivation why CR stim-
ulation is delivered at frequencies similar to the pathological
oscillatory frequency, is that in this case the desynchronizing
effect is achieved at favorably small stimulation intensities (Tass,
2003a,b). In fact, as shown computationally, CR stimulation is
able to strongly alter neuronal firing rates if delivered at fre-
quencies substantially different to the dominant frequency of
the stimulated neuronal population (Lysyansky et al., 2011b). For

instance, CR stimulation may effectively activate hypo- or inac-
tive neuronal populations without inducing neuronal synchrony
(Lysyansky et al., 2011b).

The CR stimulation (Tass, 2003a,b) is based on the phase
reset of oscillatory neuronal activity and has a broad applicabil-
ity, since the phase reset is a universal phenomenon and can be
achieved for a variety of stimulation setups and conditions, see,
e.g., Refs. (Winfree, 1977; Makeig et al., 2002; Neiman et al., 2007;
Thorne et al., 2011; Brandt, 1997; Paydarfar and Eldridge, 1987).
According to its stimulation protocol, CR stimulation counter-
acts synchronization in the neuronal target population by divid-
ing the entire population into several sub-populations where the
phases of the neuronal oscillators within each sub-population are
reset by the stimulation sequentially, i.e., in a timely coordinated
manner. In this way, the collective neuronal oscillations in the
sub-populations get phase shifted with respect to each other, and
the total synchronization is replaced by, e.g., a cluster state (Tass,
2003a,b; Lysyansky et al., 2011a). Due to the pathologically strong
synaptic connectivity, the entire target population runs from the
cluster state through a transient characterized by pronounced
desynchronization and finally resynchronizes if left unperturbed.
Accordingly, to keep the neuronal ensemble in a desynchronized
state, CR stimuli are delivered intermittently (Tass, 2003a,b), for
instance, by applying CR in anm : nON-OFF mode, where a few
m cycles with CR are optimally followed by a few n cycles with-
out any stimulation (Lysyansky et al., 2011a), for example, with
m = 3 and n = 2 (Tass et al., 2012a,b). Such a stimulation pro-
tocol has computationally been found to be effective in inducing
transient desynchronization in the stimulated neuronal ensembles
(Tass, 2003a,b; Lysyansky et al., 2011a).

The post-stimulus transient, where the stimulation-free neu-
rons undergo an unperturbed desynchronized dynamics, plays an
important role for the emergence of long-lasting effects of CR
stimulation. In computational models taking into account the
adaptive synapses governed by spike timing-dependent plastic-
ity (STDP) (Gerstner et al., 1996; Markram et al., 1997; Feldman,
2000; Wittenberg and Wang, 2006; Caporale and Dan, 2008), it has
been shown that CR stimulation can lead to a reduction of the
mean synaptic weight and, in turn, shift the network to a state
characterized by desynchronized activity and weak connectivity
(Tass and Majtanik, 2006; Hauptmann and Tass, 2007) which per-
sists after the stimulation is switched off. Modeling shows that CR
stimulation is effective for a number of stimulation setups, in par-
ticularly, for direct somatic stimulation as well as for excitatory or
inhibitory synaptically-meditated stimulation which corresponds
to stimulation of afferent or efferent fibres (Popovych and Tass,
2012). This is particularly important since it has been shown that
stimulation of fibres projecting to the STN appear to be respon-
sible for the therapeutic effect of HF DBS delivered through STN
electrodes (Gradinaru et al., 2009).

In order to further optimize the therapeutic benefit of CR
stimulation, in this paper we investigate the impact of the stimula-
tion parameters and the stimulation protocol on the stimulation-
induced desynchronization. In particular, we focus on how the
timing of the phase resets of the neuronal sub-populations influ-
ences the quality of the stimulation-induced cluster state and the
post-stimulation transient. We found that appropriately adapted
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non-uniform stimulation onsets for the different stimulation sites
can divide the phases of the stimulated neurons in such a way that
the desynchronized post-stimulation transient gets significantly
prolonged, until the population eventually resynchronizes again.
To confine the complexity of our analysis, we study phase models
without STDP. Phase resetting can be incorporated in such models
in a natural way. We here set out to determine an optimal pattern
of phase resets for CR stimulation. Put otherwise, we address the
question of how to optimally choose the stimulation onsets for the
single stimulation sites in CR?

In weakly coupled networks of oscillators, the technique
of averaging is often applied to obtain a coupling which
involves only the relative phase differences of the interact-
ing oscillators (Ermentrout and Kopell, 1991; Swift et al., 1992;
Hoppensteadt and Izhikevich, 1997). In globally coupled systems
of identical neurons, these averaged phase models always pos-
sess symmetric cluster states, i.e. states, in which m clusters of
equal size exist with a phase distance of 2π/m between neighbors
(Okuda, 1993). Hence, a natural answer to the question above is
to choose the stimulation times such that the phases get uniformly
distributed over one period, independently on the type of neurons.
In this case target patterns of the stimulation are the symmetric
cluster states. However, in non-averaged models, the importance
of the coupling between the single neurons becomes apparent. It
plays an important role in determining the exact way of how the
stimulation should be applied to cause a longer transient. In this
work, we use systems of globally pulse-coupled phase oscillators
for modeling the dynamics of a neuronal population. In partic-
ular, the symmetric cluster states disappear generically, and non-
symmetric cluster states become possible candidates as stimulation
target states. We propose a method for computing the stimulation
times, which resets the system to a suitable cluster state. The tim-
ing points of the applied stimuli in these cases are non-uniformly
spaced. The desynchronizing post-stimulation transient after such
a stimulation turns out to be longer than the corresponding post-
stimulation transient after a uniform CR stimulation of the same
system.

The paper is organized as follows. In Section 2.1 we intro-
duce the globally pulse-coupled model that is used to describe the
collective dynamics of the neurons. In Sec. 2.2 we study the rel-
evant dynamical properties of the model, i.e., the appearance of
synchronization, symmetric clusters and splay states. CR stimu-
lation is introduced to the model in Sec. 2.3, and we derive how
one should apply CR stimuli to obtain longer post-stimulation
desynchronization transients in Sec. 2.4. The theoretical analy-
sis is illustrated by numerical simulations in Sec. 3. In particular,
the robustness of the results to the variation of the stimulation
parameters (stimulation intensity and electrode activation time)
is studied in Sec. 3.2. The effects of inhomogeneous frequencies is
studied in Sec. 3.3.

2 MATERIALS AND METHODS
2.1 PULSE-COUPLED PHASE OSCILLATORS
Phase models play a key role in describing the individual dynamics
of single oscillators, e.g., oscillatory neurons, see e.g., (Kuramoto,
1984). In particular, a stable periodic dynamics can be modeled

by a simple equation for the periodic motion of the phase with
frequency ω: ϕ(t) = ϕ(0) + ωt, where ϕ is considered modulo
2π. The direction of the phase is neutrally stable. Therefore, a
sufficiently weak temporary perturbation, which does not move
the original system far away from the corresponding limit cycle,
persists in the phase for all times, while all its other effects die
out exponentially fast due to the stability of the limit cycle which
corresponds to the periodic motion. In coupled systems, weak
interactions can be conceived as perturbations, and the phase
reduction can be applied as well (Kuramoto, 1984; Hansel et al.,
1993; Hoppensteadt and Izhikevich, 1997; Brown et al., 2004). In
fact, phase models are particularly important for studying net-
work dynamics, because many types of synchronization, which
are of interest in such models, depend on the relative phases of the
units combining the network (Pikovsky et al., 2001).

The effect of perturbations is incorporated into the phase equa-
tions by the phase response curve (PRC) (Guckenheimer, 1975;
Winfree, 2001; Kuramoto, 1984; Ermentrout, 1996) (see Figure 1).

It measures the response of the individual neuron to weak stim-
uli. We consider the case when it admits a representation in terms
of a smooth scalar functionZ(ϕ) of the phase. For example, apply-
ing a weak current I(t) to a neuron with PRC Z(ϕ) changes its
phase dynamics from ϕ̇(t) = ω to

ϕ̇(t) = ω + I(t) · Z(ϕ(t)),

which describes the phase dynamics in the weak stimulation limit
(Kuramoto, 1984). If the perturbation is pulse-like, e.g., a brief
electrical stimulation or a synaptic input from another neuron (if
synapses are fast), it may be approximated as an instantaneous
input which resets the neuron’s phase at time t = t0 of the incom-
ing pulse as following

ϕ(t−0 ) �→ ϕ(t+0 ) = ϕ(t−0 ) + I · Z(ϕ(t−0 )),

where ϕ(t−0 ) = limt↑t0 ϕ(t) and ϕ(t+0 ) = limt↓t0 ϕ(t). We can
formally write the pulse-like perturbation as I(t) = I · δ(t− t0),
using the Dirac delta-function (Goel and Ermentrout, 2002). In
what follows, we study a system of N identical phase oscil-
lators which are globally pulse-coupled with weight I = κ

N
(Goel and Ermentrout, 2002)

ϕ̇j(t) = ω +
κ

N
Z(ϕj(t

−))
N∑
k=1

∑
�

δ(tk,� − t) (1)

FIGURE 1 | Phase response curves. (A) PRC Z(ϕ) = ZH(ϕ) =
− sin(ϕ) of an oscillator close to a bifurcation of Hopf- or Bautin-type
(Brown et al., 2004); (B) PRC Z(ϕ) = ZML(ϕ) of a particular Morris-Lecar
type model (Ermentrout, 1996; Sato et al., 2011).
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where tk,� are the times where the k-th neuron spikes. For con-
venience we assume that a single neuron emits a spike if its phase
crosses zero (mod 2π). In such a way, if the phase ϕk of neu-
ron k passes through the spike,ϕk(t

−
k,�) = 2π, all neurons ϕj are

reset to ϕj(t+k,�) = μ(ϕj(t−k,�)) where the resetting function μ is

defined as

μ(ϕ) = ϕ +
κ

N
· Z(ϕ). (2)

In the case that n neurons simultaneously spike at time t = t∗,
the reset value of neuronϕj is taken to beϕj(t+∗ ) = μn(ϕj(t−∗ )),
where μn(ϕ) = μ(μ(...μ(ϕ)...)) denotes the n-fold superposi-
tion of the resetting function. This mapping is preferable to the
choice of ϕj(t+∗ ) = ϕj(t−∗ ) + nκ

N Z(ϕj(t−∗ )) because it assures
a continuous dependence on the initial conditions. More specifi-
cally, the effect of the spiking of a cluster of nneurons changes con-
tinuously as the neurons split from the cluster, i.e. μ(τ1 + μ(τ2 +
μ(...μ(ϕ)...))) → μn(ϕ) as the interspike intervals τi → 0. Note
that the resetting function for the cluster spikes can also be mea-
sured or computed directly in order to achieve more realistic mod-
eling (Achuthan and Canavier, 2009). Applied to our case it would
mean using a given measured function μ(ϕ, n) instead of μn(ϕ)
in the case when ann-cluster spikes. However, we restrict our anal-
ysis to the functionμn(ϕ) defined as a superposition of individual
resetting functions.

Note, that for sufficiently small values of κ/N the resetting
function μ is monotone. This ensures the preservation of the
ordering of the phases. We assume that N is sufficiently large
and this property holds. For some systems (Goel and Ermentrout,
2002; Brown et al., 2004; Stiefel et al., 2009), it turned out, that the
PRC has a small value at the spike moment Z(0) ≈ Z(2π) ≈ 0.
For simplicity, we assume that Z(0) = Z(2π) = 0 holds for our
model. Let us shortly explain why this is a reasonable approxima-
tion for weakly coupled spiking systems. Firstly, the modulus of
the PRC must be roughly proportional to the density of isochrons
(Winfree, 2001; Guckenheimer, 1975) at the corresponding point
of the limit cycle of the full system. This density on the other hand
is inversely proportional to the modulus of the vector field, which
is large at the spiking point. Therefore, the modulus of the PRC
has to be small at the spiking point.

Note, even though this work is focused on systems with pulse
coupling (1), the main qualitative message about non-uniform CR
stimulation and non-uniform positions of clusters still holds for
systems of the form

ϕ̇j = ω +
κ

N
Z(ϕj)

N∑
k=1

G(ϕk), (3)

with a smooth, periodic coupling functionG, which was proposed
in (Winfree, 2001). Systems (1) and (3) were less extensively stud-
ied than their averaged versions, which take the form

ϕ̇j = ω +
κ

N

N∑
k=1

H(ϕk − ϕj), (4)

whereH(ϕ) = (2π)−1 ∫ 2π
0 Z(ψ)G(ϕ + ψ)dψ, see, for example,

(Ermentrout and Kopell, 1991; van Vreeswijk et al., 1994; Daido,

1997; Kuramoto, 1997). As a result of the averaging, the stability
properties of the corresponding solutions of (1) (or (3)) and (4)
may differ at the order of O(κ2). This is the same magnitude as
of the errors made by the phase reduction, and, thus, studying
the averaged system suggests itself as a simpler and, presumably,
equivalent task. In the next section we show that an important
genericity of stationary solutions with distributed phases is over-
looked by this choice. In fact, the homogeneous stationary solu-
tions or symmetric clusters in the averaged system (4) correspond
to some other, generically non-homogeneous solutions of the orig-
inal system, whose shape may differ at the order of O(κ), see, for
instance, Eqs. (12) and (13) below. A precise targeting of these
solutions by CR can essentially contribute to the efficacy of the
desynchronization technique. Since systems (1) and (3) admit
non-homogeneous stationary solutions with distributed phases,
it is of particular interest to study them in the context of CR.

2.2 SYNCHRONIZATION, CLUSTERS, AND STATIONARY SOLUTIONS
In this section we review the dynamical properties of the
stimulation-free population (1), which are relevant in the con-
text of desynchronization. In particular, we study the appearance
and stability of a synchronized state, cluster states, as well as splay
states. We pay special attention to the differences between the men-
tioned dynamical states of models (1), (3), and (4).

2.2.1 Stability of synchronized solutions
In each of the systems (1), (3) and (4), there exists an in-phase
synchronous solution where all neurons are perfectly synchronized

ϕ1(t) = · · · = ϕN (t).

The conditions for the stability of the synchronous state are well
known for all of the above systems (Goel and Ermentrout, 2002).
In particular, for the pulse-coupled system (1), in-phase synchro-
nization is linearly stable iff

κZ′(0) < 0. (5)

For (3) the corresponding condition reads

κ

∫ 2π

0

G(ϕ)Z′(ϕ)
ω + κZ(ϕ)G(ϕ)

dϕ < 0. (6)

For the averaged system (4), the stability condition of the synchro-
nized state is

−κH ′(0) =
κ

2π

∫ 2π

0
G(ϕ)Z′(ϕ)dϕ < 0. (7)

A comparison of conditions (5) – (7) leads to the following rela-
tionships:

– Vanishing coupling: Conditions (7) and (6) for the averaged
and non-averaged systems differ only in the second order of κ,
respectively. Therefore, they coincide in the limit of small coupling
κ → 0, if H ′(0) �= 0.

– Smooth, pulsatile coupling: If the coupling function G(ϕ) is
pulse-like, i.e., it is positive and concentrated at ϕ = 0, then

H(ϕ) ≈ ḠZ(−ϕ), Ḡ =
1
2π

∫ 2π

0
G(ψ)dψ > 0,

xxxx 2013 | Volume 7 | Article 63 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Computational_Neuroscience/archive


Lücken et al. Desynchronization boost by non-uniform CR-stimulation

and the condition for synchronization of the averaged system (7)
coincides with the condition for the non-averaged pulse-coupled
system (5) provided Z′(0) �= 0.

Although in this work we will focus on smooth PRCs, it is worth
to mention another synchronization effect, which may generically
occur for PRCs, which have discontinuous derivatives as a phase of
zero is approached from the left and right (Lücken and Yanchuk,
2012). Though the synchronous state is locally unstable in this
case, the first order parameterR1(t) =

∣∣ 1
N

∑
k exp(iϕk(t))

∣∣may
still approach its maximal value R1 = 1 due to the appearance of
structurally and dynamically stable homoclinic connections to the
synchronous state.

2.2.2 Splay states and stationary solutions
Splay states are periodic solutions of system (1), in which all oscil-
lators are spread in a way that the time differences between the
subsequent spikes tk+1,� − tk,� are always the same (Swift et al.,
1992; Zillmer et al., 2007). Note that the term “splay state” can
also be used differently and may, more generally, refer to any
state featuring phases which are spread over the periodic inter-
val [0, 2π] (Achuthan and Canavier, 2009). Splay states are impor-
tant for desynchronization issues, since they possess small order
parameters Rn =

∣∣ 1
N

∑
k exp(inϕk(t))

∣∣.
To study splay states in large systems it is useful to consider

an equation for the phase distribution density ρ(t, ϕ), since its
stationary solution approximates the distribution of the phases of
splay states in the limit of large N . For the pulse-coupled system
(1) the dynamics of the phase distribution density is governed by
the following continuity equation (Ernst et al., 1995; Brown et al.,
2004)

∂tρ(t, ϕ) = ∂ϕ(ρ(t, ϕ)(ω + κZ(ϕ)ρ(t, 0))). (8)

Its equivalent for the smoothly-coupled model (3) is

∂tρ(t, ϕ)

= ∂ϕ

(
ρ(t, ϕ)

(
ω + κZ(ϕ)

∫ 2π

0
G(ψ)ρ(t, ψ)dψ

))
, (9)

and for the averaged system (4) one gets

∂tρ(t, ϕ)

= ∂ϕ

(
ρ(t, ϕ)

(
ω + κ

∫ 2π

0
H(ψ − ϕ)ρ(t, ψ)dψ

))
. (10)

Solving (8) for stationary solutions ρ(t, ϕ) = ρs(ϕ) and taking
into account the normalization

∫ 2π
0 ρs(ψ)dψ = 1, we obtain

ρs(ϕ) =
(∫ 2π

0

ω + κZ(ϕ)ρs(0)
ω + κZ(ψ)ρs(0)

dψ

)−1

. (11)

Here ρs(0) is uniquely determined by the implicit equation
obtained from (11) by inserting ϕ = 0 (see Appendix A.1.1 for
details). Thus, (11) describes a unique stationary solution of (8).
For small κ, this solution can be approximated as

ρs(ϕ) =
1
2π

+ κ

Z̄ − Z(ϕ)
(2π)2ω

+ O(κ2), (12)

where Z̄ = 1
2π

∫ 2π
0 Z(ψ)dψ is the mean value of the PRC.

For smoothly-coupled systems (3), one analogously finds that a
unique stationary solution of (9) exists, if κ is not too large (see
Appendix A.1.1). Its first-order expansion in κ reads

ρs(ϕ) =
1
2π

+ κ

Ḡ(Z̄ − Z(ϕ))
2πω

+ O(κ2). (13)

For the averaged model (4), we find that for any value of κ the
constant distribution density ρ̄(ϕ) ≡ 1

2π is a stationary solution
of (10).

As follows from Eqs. (12) and (13), phase distributions of the
splay states of the pulse-coupled system (1) as well as the non-
averaged system (3) deviate from a uniform distribution. For
small κ, the deviations can be estimated in the first order in κ

by (12) and (13), respectively. This is in contrast to splay states of
the averaged system (4), which are always uniformly distributed.
Figures 2A and B illustrate non-uniform stationary phase distri-
butions in pulse-coupled systems with PRCs ZH(ϕ) [Figure 1A]
and ZML(ϕ) [Figure 1B], respectively. Figure 3 shows that the
theoretically obtained stationary phase distribution density ρs(ϕ)
[black curve] convincingly approximates the numerically calcu-
lated phase distribution histogram [gray bars] of the splay state in
the pulse-coupled system (1) for large number N of oscillators.

FIGURE 2 | Black solid curves show the stationary phase distribution

densities ρs(ϕ) (with the scale on the left vertical axes) for the

pulse-coupled systems (1) with PRCs (A) Z(ϕ) = ZH(ϕ) [Figure 1A]

and (B) Z(ϕ) = ZML(ϕ) [Figure 1B]. The corresponding PRCs are
depicted by gray dashed curves and rescaled by some constant ratio (with
the scale on right vertical axes). Coupling strength κ = 1.0.

FIGURE 3 | Black solid curve depicts the theoretical solution of the

stationary phase distribution density ρs(ϕ) of (8) for the

pulse-coupled system (1) with a PRC of Morris-Lecar type

Z(ϕ) = ZML(ϕ) [Figure 1B]. Gray bars illustrate the numerically
computed and normalized phase distribution histogram of the
corresponding splay state for N = 1000 oscillators. Coupling strength
κ = 3.
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FIGURE 4 | Maximal moduli λmax of characteristic multipliers

of cluster states (red ’◦’: tangential, red ’�’: transverse) and splay

states (blue ’+’) versus the number of clustersm, respectively the

number of neuronsN , for (A) PRC Z = ZH and (B) PRC

Z = ZML. Multipliers for cluster states have been calculated
asymptotically for large N using an asymptotic technique described in
Appendix B.1. Coupling strength
κ = 0.5.

The stability of splay states as well as cluster states can be studied
by the set of multipliers λ of the corresponding return map, which
determine the rate, with which small perturbations from the con-
sidered state are growing with time. In particular, if the multiplier
with the maximal absolute value is λmax, then a generic perturba-
tion will grow as λjmax with j is the number of spikes of a neuron
from the ensemble. Therefore, a stable state corresponds to the case
|λmax| < 1 and an unstable |λmax| > 1. We calculated numer-
ically the maximal multipliers λmax of the splay state of system
(1) for two cases: (i) Z(ϕ) = ZH(ϕ) and (ii) Z(ϕ) = ZML(ϕ)
[Fig. 4, blue pluses]. We observe that the splay states are unstable
for allN except N = 3 in case (ii), and their multipliers converge
to an asymptotic value λ∞ > 1 as the number of neurons N
increases. Note that the splay state may be stable for synaptic cou-
pling and type-I PRC, as shown in (Achuthan and Canavier, 2009)
for a system of a few coupled oscillators. For a more detailed anal-
ysis of the stability of splay states in large pulse-coupled systems,
we refer to (Abbott and van Vreeswijk, 1993; Zillmer et al., 2007;
Calamai et al., 2009).

2.2.3 Symmetric clusters
In this paper we consider strongly synchronized neuronal ensem-
bles, where the splay state is expected to be unstable. When an
external desynchronization technique would be able to move the
system in a vicinity of such a state, the achieved order param-
eter would be very low for a relatively long time. In the case,
when the number of stimulation cites is naturally limited to a
low number, a natural substitute for the target state of CR stim-
ulation is a cluster state. For the sake of simplicity we will con-
sider symmetric cluster states consisting of m clusters, each of
them containing N/m neurons. Within each cluster, the neurons
are synchronized and have the same phase, whereas the phases
of different clusters are shifted with respect to each other. For
systems (1) and (3) there exists a unique stationary, symmetricm-
cluster state, at least for moderate coupling strength. The phases

ψj of individual clusters are not equidistantly distributed, i.e.,
in general |ψj+1(t) − ψj(t)| �= 2π/m. In contrast, in the aver-
aged systems of the form (4), equidistantly distributedm-clusters
with |ψj+1(t) − ψj(t)| = 2π/m always exist. In Appendix B.1,
we explain how one can determine multipliers of symmetric clus-
ter states for system (1). We have computed them for the cases (i)
Z(ϕ) = ZH(ϕ) and (ii) Z(ϕ) = ZML(ϕ) [Fig. 4A and B]. It is
convenient to distinguish between tangential and transverse mul-
tipliers, which correspond to perturbations within the invariant
cluster space and perturbations which disperse the single clusters
by destroying the perfect synchrony within the clusters, respec-
tively. For case (i), and 1 ≤ m, N ≤ 25, all m-cluster states are
unstable. In case (ii), there is a single value m = 3 for which the
cluster state is stable. The tangential multipliers seem to asymp-
tote towards a limit with increasing m [Fig. 4, red circles]. If the
transverse multipliers are smaller than the tangential, as it is the
case for both cases [Fig. 4, red markers], one expects that the per-
turbed dynamics stays near the invariant cluster space as long as
the linear prediction is valid. Detailed analysis of cluster states for
different PRCs has been performed in (Ashwin and Swift, 1992;
Okuda, 1993; Hansel et al., 1993; Chandrasekaran et al., 2011;
Lücken and Yanchuk, 2012).

2.3 MODELING DEEP BRAIN STIMULATION
Strong enough electrical stimuli or synaptic input can reset the
phase of a neuron in such a way that its oscillation restarts after
the stimulation from a definite phase (Winfree, 1977; Best, 1979;
Tass, 1999; Popovych and Tass, 2012). The general mechanism of
phase resetting can be understood as follows. In a stimulated neu-
ron, a stable steady (e.g., hyperpolarized) state appears, which is
approached during the stimulation. When the stimulation ter-
minates, the steady state disappears, and the system relaxes back
to the limit cycle with an asymptotic phase ϕs determined by
the isochron on which the stimulation specific steady state was
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FIGURE 5 | Schematic illustration of the CR stimulation setup. m = 4
stimulation sites [arrows with different filling patterns] affect the

corresponding distinct sub-populations of N/m neurons [circles with the
same filling pattern].

located. However, for the phase resetting procedure which we pro-
pose, the exact value of ϕs is not essential. Therefore we include
the stimulus in the simplest way which provides the model with
a qualitatively adequate stimulus response. The phase model with
the incorporated stimulus reads

ϕ̇j = ω + Z(ϕj)

(
Ij(t) +

κ

N

N∑
k=1

∑
�

δ(tk,� − t)

)
, (14)

where Ij(t) corresponds to the stimulus applied to the j-th neu-
ron. We assume, that there are m stimulation sites, each stimulat-
ing a distinct group ofN/mneurons [Figure 5]. These stimulation
sites can either be active or not, that means

Ij(t) =
{
I, for t ∈ Sj =

⋃
i Ij,i

0, else,
(15)

where Ij,i are stimulation time intervals and I is the stimulation
intensity. For two neurons ϕj and ϕk from the same group we
have Sj = Sk and Ij(t) ≡ Ik(t).

The dynamics of uncoupled neurons under stimulation is
described as

ϕ̇j = ω + IZ (ϕj). (16)

If IZ (ϕ) < 0 for some ϕ, and if the intensity I is of sufficiently
large magnitude, there appears a pair of fixed points, stable ϕs
and unstable ϕu, satisfying ω + IZ(ϕ) = 0. If only one such pair
exists, the neuron will approach the stable fixed pointϕs after some
time of stimulation and stay there until the stimulation terminates
(see Figure 6). In such a situation, we call ϕs the resetting point.

The stimulation described by (14) aims at establishing a dis-
tribution of phases of the neuronal ensemble that prolongs the
post-stimulus transient as much as possible before the ensemble
synchronizes again. In principle, the strategy is to establish a state
as close as possible to some stationary desynchronized state. With
a given number m of stimulation sites which influence equally
large groups of N/m neurons, the target states for the control
are restricted to m-cluster configurations with clusters of equal
size. We call a target pattern the state, which is intended to be
realized at the end of the stimulation. A series of successive acti-
vations and deactivations of the stimulation sites is called stim-
ulation sequence, and a time interval during which the resetting

FIGURE 6 | Phase dynamics of the uncoupled neurons (16) during

stimulation. ϕs and ϕu denote stable and unstable fixed points,
respectively. The arrows indicate the direction of convergence of the phase
to the stable fixed point ϕs. PRCs and stimulation intensities (A)

Z(ϕ) = ZH(ϕ), I = 10 and (B) Z(ϕ) = ZML(ϕ), I = −10.

stimuli are delivered at allm sites is called stimulation cycle. For the
averaged system (4), the target pattern consists of equidistant clus-
ters ψj = 2π

m j + ϕs, 1 ≤ j ≤ m, such that the last stimulation-
induced cluster is located at the resetting point ψm = ϕs at the
end of the stimulation cycle. For systems of type (1) or (3), the
target pattern is a cluster state ψj = 2π

m j + ϕs + O(κ), which is
in general not equidistantly distributed. Among all possible stim-
ulation sequences, we restrict our considerations to those where
each stimulation site is activated once per stimulation cycle. The
activity of the j-th stimulation site is confined to the time interval
Sj = [tj , tj + τ ], where t1, ..., tm are the onset times within the
stimulation cycle, and τ is the stimulation duration, which is the
same for all stimulation sites. In practice, stimulation sequences
have to be administered repeatedly after the system recovers to
some undesired level of synchronization (Tass, 2003a).

2.4 STIMULATION-INDUCED STATIONARY m-CLUSTER STATES
Since the stimulation target pattern has to be established as pre-
cisely as possible, one has to take into account the influences
of the coupling among neurons on the stimulation-induced pat-
tern. We now describe how appropriate stimulation sequences can
be found when we restrict ourselves to the stimulation timing
Sj = [tj , tj + τ ], j = 1, ...,m mentioned above. The long-term
desynchronizing effects of such stimulation sequence will be dis-
cussed in the next Section 3. For the brevity of notations, let us
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introduce the resetting map of the stimulated system (14) by

Φ : R
m × [0, 2π]N → [0, 2π]N ,

(t;ϕ) �→ Φ(t;ϕ),

where ϕ ∈ [0, 2π]N is the state of the system at the onset of the

stimulation at t = ton
def= min{t1, . . . , tm}, and t = (t1, ..., tm)

is the vector of the onset times of the stimulation sites. Φ(t;ϕ)
describes the N-dimensional state of the system at the end of the
stimulation. If the duration τ and magnitude of the stimulation
intensity I are large enough (see Sec. 3.2), each neuronϕk of the j-
th group is reset to the collective cluster phaseϕk(tj + τ ) ≈ ϕs at
the offset time tj + τ of the j-th stimulation site and continues to
evolve in a cluster of a common phase which we denote byψj(t;ϕ).
The dependence ofψj on initial conditionsϕ follows from the fact
that this cluster may still be influenced by the other clusters and
neurons. In practice, the state ϕ before stimulation is unknown.
To ensure full control over the resulting cluster state Ψ(t;ϕ), it
should be independent of the initial state ϕ. To this aim we have
to assume that the resetting mechanism results in an accurate
reset of the stimulated neurons to a determined phase ϕ = ϕs.
Furthermore, we have to ensure that the reset neurons are not
affected by neurons, which have not yet been reset in the current
stimulation cycle. Both conditions can be fulfilled by choosing a
sufficiently large duration τ and intensity I for the reset. Thus,
we can approximately identify the state Φ(t;ϕ) with the lower
dimensional cluster state Ψ(t) = (ψ1(toff), ..., ψm(toff)), where
toff = τ + max{t1, . . . , tm} denotes the offset time of the entire
stimulation sequence, and moreover, Ψ(t) is independent on ϕ.
Now, let Ψ∗ = (ψ∗

1 , ..., ψ
∗
m) denote the phases of the stationary

cluster state which serves as the stimulation target pattern and can
be obtained as described in Appendix B.1. Then, the problem is
to find a solution t of

Ψ(t) = Ψ∗. (17)

In this study we do not aim to provide a general algorithm to solve
this equation. Moreover, due to discontinuities that are caused by
the pulse-like interactions of the ensemble, the function Ψ(t) is
only piecewise smooth (see Figure 8). We approach the solution of
(17) numerically by starting from the uniformly distributed stimu-
lation sequence t0 as an initial guess. Then we apply the minimiza-
tion Nelder-Mead simplex search algorithm (Lagarias et al., 1998),
which is implemented in the MATLAB function fminsearch,
to minimize ‖Ψ(t) − Ψ∗‖. Table 1 and Figure 7 illustrate an
example of the computed stimulation sequence for the case of
four stimulation sites m = 4 and a Morris-Lecar type of PRC
Z(ϕ) = ZML(ϕ) (see Figure 1). For the parameter values given
in caption to Table 1, the target pattern has been computed as well
as the stimulation sequence t. The optimal stimulation sequence
deviates by up to ∼ 4% from the uniformly distributed one where
Δt∗j is the same for all j = 2, ...,m. Figure 7 illustrates the corre-
sponding switching times of the stimulation contacts. It also shows
the spiking times of the obtained clusters after the stimulation. In
order to find the stimulation sequence, the discontinuous system
(17) has been solved. Figure 8 illustrates the emerging types of
discontinuities by plotting ‖Ψ(t∗1, t

∗
2, t

∗
3, t4) − Ψ∗‖ versus t4 for

fixed t∗1, t
∗
2 , and t∗3 .

Table 1 | Example of target pattern (stationary cluster state)

Ψ∗ = (ψ∗
1 , ..., ψ

∗
4) and stimulation sequence t = (t∗1, ..., t

∗
4), with

m = 4,Z = ZML, ω = 1, κ = 0.5, τ = 2π, I = −10, and

ton = 0. The time elapsed between t∗j and the preceding stimulation

onset is denoted by Δt∗j . Note the non-uniformity of the stimulation. See

also the corresponding illustration in Figure 7.

j ψ∗
j t∗j Δt∗j

1 1.169690 0 –
2 2.703008 4.749867 1.534474
3 4.284900 3.215394 1.581893
4 5.918402 1.633501 1.633501

FIGURE 7 | Illustration of the stimulation sequence, which leads to the

stationary 4-cluster state. Black horizontal bars indicate time intervals
when a corresponding stimulation site is active, circles mark the subsequent
spike times of the established clusters. Parameter values as inTable 1.

FIGURE 8 | Illustration of the discontinuity of t4 �→ Ψ(t∗1, t
∗
2,

t∗3, t4). ‖Ψ(t∗1 , t
∗
2 , t

∗
3 , t4) − Ψ∗‖ is plotted versus t4 for fixed t∗1 , t

∗
2 , and

t∗3 . Parameters as inTable 1. The discontinuity occurs at such a value of
t4 = td that leads to ψ4(t−off) = 2π, i.e., the onset of the post-stimulation
spike of the cluster j = 4 just coincides with toff , see Figure 7. If t4 > td,
the impact of the spike of cluster ψ4 on the cluster ψ2 has to be taken into
account when calculating the resulting cluster positions.

3 RESULTS
3.1 ADVANTAGES TO UNIFORM STIMULATION
Equidistant clusters are stationary if the coupling depends only
on the phase differences as in system (4). In the non-averaged
systems (1) or (3), the phases of stationary clusters are dis-
tributed non-uniformly in [0, 2π], and the resetting technique
described in Sec. 2.4 is expected to yield longer post-stimulus
transients. The results of numerical simulations of systems (1)
with PRCs Z = ZML and Z = ZH (see Figure 1) are presented
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in Fig. 9 where plots (A) and (C) illustrate the effect of the
uniform CR stimulation and (B), (D) are related to the non-
uniform CR stimulation. Time courses of the first order param-
eter R1(t) [red curves] and the fourth order parameter R4(t)
[blue curves], defined as Rn =

∣∣ 1
N

∑
k exp(inϕk(t))

∣∣ ∈ [0, 1],
are shown. Large values of the first order parameter are indicative
of an in-phase synchronization. On the other hand, for approxi-
mately equidistantly distributedm-cluster states high values of the
m−th order parameter are combined with low values of all order
parameters with lower indices. We use these properties to detect
synchronization and the discussed slightly non-uniform cluster
states.

All simulations in Figure 9 are started at t = 0 with the neu-
rons’ phases randomly distributed in [0, 2π]. For both PRCs,
Z = ZML and Z = ZH , we observe a steady increase of R1(t)
[red curves] in the pre-stimulation epoch t � ton, which indi-
cates the onset of in-phase synchronization of the entire ensem-
ble. This process is significantly faster in the case Z = ZH
[Figure 9C, D] than for Z = ZML [Figure 9A, B] due to
Z′
H(0) � Z′

ML(0) � 0 which strengthens the linear stability of
the synchronous solution in the case Z = ZH (see Sec. 2.2).
When CR stimulation is turned on at ton = 250, the stimu-
lated phases are successively caught at ϕs and released when
the corresponding stimulation site is deactivated. At the end of
the stimulation cycle at toff ≈ 266.75, four clusters are estab-

FIGURE 9 | Advantages of the stimulation-induced target patterns

consisting of stationary cluster states [plots (B), (D)] compared to

those induced by conventional CR stimulation with equidistant

stimulation times [plots (A), (C)]. The time courses of the first order
parameter R1(t) [red curves] and the fourth order parameter R4(t) [blue
curves] of the neuronal ensemble (14) controlled by CR stimulation are
shown for two PRCs and stimulation intensities: (A), (B) Z(ϕ) = ZML(ϕ)
[Figure 1], I = −10 and (C), (D) Z(ϕ) = ZH(ϕ) [Figure 1], I = 10. For
each setup, one single CR stimulation sequence is administered at
t = ton = 250 with duration τ = 10 of single site activation. Number of
the stimulation sites m = 4, system’s size N = 240, natural frequency
ω = 1, and the coupling strength κ = 0.5. The initial phases at t = 0 were
randomly drawn from a uniform distribution on [0, 2π].

lished, which are well distributed in [0, 2π]. This leads to a
low value of R1(toff) ≈ 0 (A: R1(toff) ≈ 0.027, B: R1(toff) ≈
0.020, C: R1(toff) ≈ 0.000, D: R1(toff) ≈ 0.044) and a high
value of R4(toff) ≈ 1 (A:R4(toff) ≈ 0.987, B:R4(toff) ≈ 0.994,
C: R4(toff) ≈ 1.000, D: R4(toff) ≈ 0.969). All simulations show
a post-stimulation transient before the system resynchronizes
again and the first order parameter R1(t) approaches unity.
For both considered PRCs, the advantages of the method pro-
posed in Sec. 2.4 to establish non-equidistant clusters is sub-
stantial. For the uniform CR stimulation [Figure 9A, C] the
post-stimulation desynchronization transient is of approximately
the same duration as the initial transient in the pre-stimulation
epoch, when starting from a random distribution of the phases.
The post-stimulation transient is significantly prolonged by
the non-uniform CR stimulation in both cases, for Z = ZML

[Figure 9B] by doubling the transient duration and for Z =
ZH [Figure 9D] by tripling the duration of the desynchroniza-
tion transient. Note that small-scale oscillations of the order
parameters originate from the discontinuities of the system’s
trajectory, which occur whenever a cluster crosses the firing
threshold.

3.2 EFFECTS OF DIFFERENT STIMULATION INTENSITIES
AND DURATION

An important question is how the stimulation intensity I and the
stimulation duration τ influence the desynchronization transient.
Figure 10 shows results of numerical simulations for the PRC
Z = ZML. An increase of the stimulation duration, τ ∈ [0, 10],
leads to an increase in the desynchronized transient equally for
both, uniform [Fig. 10A] and optimized, non-uniform stimula-
tion timing [Fig. 10B]. This is indicated by longer intervals of
decreased order parameter R1 after the stimulation between ton
and toff . For the various stimulation lengths, we have ton = 200
and toff ∈ [205, 217]. Beyond τ ≈ 4.5, the effect of the uni-
form timing does not enhance, while by the optimized protocol
it increases further until about τ = τc ≈ 6.6. This value corre-
sponds to the duration which assures independence of the stim-
ulation outcome on the system’s state prior to stimulation [see
Section 2.4]. Similarly, small magnitudes of the stimulation inten-
sity 1 � |I| � 2 yield a prolonged transient for both protocols
[Figs. 10C and D]. Beyond |I| = 2, no further increase can be
observed for the uniform timing [Fig. 10C], but the transient after
the non-uniform protocol continues to grow at least until |I| = 6
[Fig. 10D].

3.3 ROBUSTNESS TO VARIATIONS OF NATURAL FREQUENCIES
In the above approach we assumed that the neurons are identical.
In more realistic situations, the parameters of individual neurons
can vary. In order to test the robustness of the proposed reset-
ting technique with respect to parameter changes, which break
the symmetry of the system, we consider an ensemble (1) with
non-identical natural frequencies ωj , j = 1, ..., N , e.g., randomly
chosen from a uniform distribution in [1 − Δω, 1 + Δω]. The
results of simulations are shown in Figure 11. We present them
for the PRC Z = ZML [Figure 1], but qualitatively similar results
have been obtained for Z = ZH as well. It turns out, that a
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FIGURE 10 | Influence of the stimulation intensity I and duration τ on

a post-stimulation transient in system (14) with PRC Z = ZML. The
four charts visualize the evolution of the order parameter R1 for τ ∈ [0, 10]
[(A), (B)], and |I| ∈ [0, 10] [(C), (D)]. The values of the order parameter are
encoded in color ranging from 0 [blue] to 1 [red], each horizontal strip of a
chart corresponds to one time course as shown in Fig. 9. CR stimulation is
applied via m = 4 stimulation sites in the stimulation interval [ton, toff ]
with ton = 200. The optimized non-uniform stimulation protocol is applied
in (B) and (D) and the conventional, uniform stimulation timing in (A) and
(C). In (A) and (B), toff ranges from toff ≈ 205 to toff ≈ 217, and in (C)

and (D), the stimulation interval is constant. In all cases the initial phases
were drawn randomly from a uniform distribution on [0, 2π]. Other
parameters: κ = 0.5, N = 240.

significant prolongation of the post-stimulation desynchroniza-
tion transient can be observed for a range of Δω. Indeed, one
observes a clear difference between the post-stimulation behavior
of the order parameters R1 and R4 for the suggested CR stimu-
lation with non-uniform stimulation timing [Figure 11C,D] and
that for the conventional CR stimulation with equidistant stim-
ulation times [Figure 11A,B]. This effect of the optimized CR
stimulation however decreases for a broader distribution of the
natural frequencies. Nevertheless, our calculations suggest that the
optimization procedure of CR stimulation can robustly improve
its desynchronizing impact on neuronal populations exhibiting
undesired synchronization.

It is well known that the broadening of the frequency range
induces a desynchronizing transition (Kuramoto, 1984) such that
the system with a very broad frequency range does not synchro-
nize even in the absence of stimulation. This transition occurs at
larger width of the frequency distribution if the coupling strength
κ is increased. In our illustration with coupling strength κ = 0.5
[Figure 11] the desynchronization transition and the loss of the
advantageous effect of the proposed stimulation technique take
place at approximately the same frequency mismatch. The sug-
gested non-uniform CR stimulation is more effective than the
uniform one for a range of Δω which supports synchronized
dynamics.

FIGURE 11 | Effect of non-identical frequencies.Time courses of the order
parameters R1 [(A), (C)] and R4 [(B), (D)] of the neuronal ensemble (14) for
a range of the frequency detuning Δω, where the natural frequencies are
randomly chosen from a uniform distribution in [1 − Δω, 1 + Δω]. The
graphical representation is as in Fig. 10. The conventional, uniform
stimulation protocol is applied in [(A), (B)] and the optimized non-uniform
stimulation timing in [(C), (D)]. In both cases the initial phases are randomly
distributed in [0, 2π]. PRC Z = ZML [Fig. 1], coupling strength κ = 0.5,
number of oscillators N = 240, number of stimulation sites m = 4,
duration of single electrode activation τ = 10, simulation onset at
ton = 200, offset at toff ≈ 217, and stimulation strength I = −10.

All results in the Sections 3.2 and Section 3.3 hold within a
range of the coupling strength, 0 < κ � 3.5 for Z = ZML and
0 < κ � 5.0 for Z = ZH (data not shown). With larger κ, the
re-synchronization after the stimulation happens faster, but the
optimized protocol is still superior to the uniform for the given
ranges of κ. This means that the length of the transient following
the nonuniform stimulation exceeds the one after the uniform by
a similar factor as in the presented case for κ = 0.5. Moreover, the
results are independent of the population sizeN if it is sufficiently
large. In practice this is already the case for N ≥ 100, i.e., if each
cluster contains 25 neurons.

4 DISCUSSION
A number of pulsatile stimulation techniques have been devel-
oped which enable to directly shift a synchronized neuronal pop-
ulation into a desynchronized state, irrespective of the initial state
at which the stimulus is delivered (Tass, 2001a,b, 2002a,b). How-
ever, less favorably, these techniques require careful calibration
of the stimulation parameters and their continuous adaptation
to varying model parameters. To overcome this limitation and
provide a desynchronizing stimulation technique which is robust
and does not require time-consuming or technically involved cal-
ibration procedures, CR’s indirect approach to desynchroniza-
tion was developed (Tass, 2003a,b): Inducing a cluster state by
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means of time-shifted phase resetting stimuli delivered to dif-
ferent neuronal sub-populations can robustly be achieved and
does not require relevant calibration (Tass, 2003a,b). The clus-
ter states, in turn, are relevant since they lead to long post-
stimulus desynchronized transients (Lysyansky et al., 2011a), and
in the presence of STDP (Gerstner et al., 1996; Markram et al.,
1997) the related decrease of the rate of coincidences induces
an anti-kindling (Tass and Majtanik, 2006; Hauptmann and Tass,
2007; Tass and Popovych, 2012). Neither in preclinical nor in clin-
ical studies adverse effects of CR stimulation have been observed
(Tass et al., 2009, 2012a,b).

We considered model networks of weakly pulse-coupled neu-
rons with phase resetting curves and compared them to averaged
models, where the phase dynamics depends only on the phase
differences between the oscillators. Whereas the latter models are
better analytically tractable and attained a great attention in the
literature (Strogatz, 2000; Winfree, 2001; Acebrón et al., 2005),
they neglect some important information about stationary states
of the original systems. In particular, the stationary splay and
cluster states are not uniform for the pulse-coupled networks,
contrary to those for the averaged models. These non-uniformly
distributed cluster states can serve as target states for CR stimula-
tion in ensembles of pulse-coupled neurons. We have found that
the optimal stimulation sequence should be slightly non-uniform
in order to approach the non-uniform cluster state at the end of
the stimulation.

We have shown that the phase response curves of the stimu-
lated neurons determine the phase distribution densities of splay
and cluster states, which, in turn, influence the timing of the
stimulation sequences. The proposed non-uniform stimulation
sequences result in significant improvements of the stimulation
outcome and lead to several times longer post-stimulation tran-
sients in comparison to the equally spaced stimulation sequences.
Intriguingly, modifications of the stimulation timing points of
only a few percent (e.g., 4%, see Figure 7) actually double or
even triple the duration of the post-stimulation desynchronization
transient [Figure 9]. The proposed approach takes into account
and compensates for the interactions among neurons during the
stimulation.

We also showed that the discussed stimulation protocol is
robust with respect to variation of the natural frequencies, stim-
ulation parameters, and coupling strength. It can lead to a pro-
longed transient for a range of non-identical frequencies of the
single oscillators. One can expect that the non-uniform stim-
ulation technique can be superior to a series of equally timed
stimulations in more diverse and realistic setups, where trans-
mission delays and coupling functions are heterogeneous and
this should be confirmed in further studies. Moreover, since the
mechanism of the discussed desynchronizing method is based
on the phase reset of the neuronal oscillations, which is a uni-
versal phenomenon of the neuronal dynamics (Winfree, 1977;
Best, 1979; Tass, 1999), and the timing of the optimal stimula-
tion sequence is determined by the phase response curves, the
presented approach is generic and can be applied to other neu-
ronal models and other stimulation-induced target states. In par-
ticular, to models, which employ PRCs of the second, or higher
order (Oprisan et al., 2004; Achuthan and Canavier, 2009). For

our purpose, we restricted the investigation to the system (1),
since it is one of the simplest models, which already possesses
enough features illustrating our main finding, that the opti-
mal stimulation timing is non-uniform. In the framework of
the considered model one can however incorporate the PRCs
measured either experimentally or obtained by detailed mod-
eling of the globus pallidus and STN (Schultheiss et al., 2010;
Farries and Wilson, 2012a,b) which are possible target regions
for CR deep brain stimulation modalities (Popovych and Tass,
2012; Tass et al., 2012b), and where a change in PRC structure
might contribute to disease-related changes in synchronous activ-
ity. Another target for noninvasive acoustic CR neuromodulation
adapted for the treatment of tinnitus (Tass and Popovych, 2012;
Tass et al., 2012a) is the auditory cortex where a phase reset can
be achieved by different types of auditory stimuli (Thorne et al.,
2011; Brandt, 1997).

As yet, only a slight modification of the τ/m timing of CR stim-
ulation (with onset times t1, t1 + τ/m, t1 + 2τ/m, . . . , t1 +
(m− 1)τ/m) has been investigated in the Kuramoto model as
well as in an ensemble of synaptically coupled FitzHugh–Nagumo
oscillators modeling spiking neurons in the context ofM : N ON-
OFF CR stimulation, where M cycles with CR are followed by N
cycles without stimulation (Lysyansky et al., 2011a). For that stim-
ulation protocol a τ/m timing of CR stimulation was used. How-
ever, in one variant of this protocol theM-th stimulation cycle was
prematurely terminated at the break time toff , where toff < τ . An
optimal choice of toff (e.g., toff = 0.44τ for a particular set of
model parameters tested) caused a pronounced increase of the
desynchronization transient, i.e. an increase of the time elapsing
to resynchronization by a factor of approx. 2. In contrast, inap-
propriate values of toff induced a decrease (e.g., a halving) of the
resynchronization time.

To study post-stimulus desynchronization transients of two
phase oscillators with time-delayed coupling subject to coincident,
but phase shifted stimulation the transient timeTtr (defined as the
time it takes a trajectory after stimulus offset to permanently enter
into an ε vicinity of the stable phase-locked state) was computed
(Krachkovskyi et al., 2006). For vanishing time delays the phase
space of that two-oscillator model is simple and the optimal phase
shift in the coupling term puts the system’s phase difference onto
an unstable fixed point (figure 9a in (Krachkovskyi et al., 2006)).
In contrast, for non-vanishing time delay the phase space gets
considerably more complex, and the optimal phase shift puts the
system onto a particular point in phase space where the system gets
trapped by a stable manifold, leading to a particularly high tran-
sient time Ttr. Incorporating time delays into the coupling of the
model studied in this paper will certainly increase the complexity
of its phase space. Given the results by Ref. (Krachkovskyi et al.,
2006), we expect that such timed delays may have an impact on
the resynchronization transient and, hence, on the optimal timing
of CR stimulation.

Another important direction for future analysis comes from
the fact that biological networks typically comprise neurons of
different kind. Consequently, our approach has to be extended
to mixed populations, containing neurons of different type by,
for example, including inhibitory neurons found in human STN
(Levesque and Parent, 2005). In this work we considered a simple

xxxx 2013 | Volume 7 | Article 63 | 11

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Computational_Neuroscience/archive


Lücken et al. Desynchronization boost by non-uniform CR-stimulation

all-to-all coupling topology which provides an easy way to obtain
a synchronized neuronal dynamics serving as a model for the
dynamical regimes encountered in Parkinsonian patients and
monkeys (Nini et al., 1995; Levy et al., 2000). This was also moti-
vated by the reported high functional connectivity of tremor-
related neurons in STN (Amtage et al., 2009) and anatomical
intranuclear connectivity as follows from experimental and mod-
eling studies (Iwahori, 1978; Kita et al., 1983; Gillies and Willshaw,
1998, 2004; Shen and Johnson, 2006), but see Ref. (Wilson et al.,
2004). The considered weak coupling is supported by the observed
gradual decay and recovery of pathological oscillations at the onset
and offset of DBS (Kang and Lowery, 2011). CR stimulation has
been shown to work for other coupling topologies and stimula-
tion setups, e.g., for sensory stimulation (Tass and Popovych, 2012;
Popovych and Tass, 2012; Tass et al., 2012a). For further details of
the effects of CR stimulation, more realistic coupling topologies
and sophisticated neuronal models as well as connections to other

neural populations within the basal ganglia and cortical brain areas
have to be considered. Also, the spatial spread of the stimulation
current, 3D effects as well as optimized electrode geometries (see
e.g., (Buhlmann et al., 2011)) have to be taken into account in
future studies. Pursuing such studies, our ultimate goal is to come
up with CR sequences which enable to further minimize the stim-
ulation current for DBS. This might contribute to a decrease of
the rate of side effects caused by stimulation spread to neighbor-
ing brain areas. By the same token, this might enable considerably
smaller geometries of the implantable pulse generator due to a
significant reduction of battery size.
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APPENDIX A
A.1 STATIONARY SOLUTIONS OF THE PHASE DENSITY

EQUATIONS
A.1.1 PULSE COUPLED SYSTEMS
In this section we show how a stationary solution ρ(t, ϕ) = ρs(ϕ)
for (8) can be found and show that it is unique. It follows from (8)
that this solution satisfies

ρs(ϕ)(ω + κZ(ϕ)ρs(0)) = C (A.1)

with some constant C. Hence

ρs(ϕ) =
C

ω + κZ(ϕ)ρs(0)
.

The constant C can be determined from the normalization con-
dition ∫ 2π

0

C

ω + κZ(ψ)ρs(0)
dψ = 1. (A.2)

Combining (A.1) and (A.2), we obtain the expression (11) for
ρs(ϕ). Evaluating (11) atϕ = 0 and taking into accountZ(0) = 0,
the equation for ρs(0) reads

ρs(0) =
(∫ 2π

0

dψ

1 + κ

ωZ(ψ)ρs(0)

)−1

.

To investigate the resolvability of this equation we consider the
function

F (x) :=
(∫ 2π

0

dψ

1 + κ

ωZ(ψ)x

)−1

− x,

which is well-defined and smooth on x ∈ (0, ζ) with ζ = ∞ in
case κZ(ϕ) ≥ 0, and ζ = −ω

minψ κZ(ψ) otherwise. It is easy to see

that F (0) = 1
2π > 0. Furthermore, we will show that

(i) limx→ζ F (x) = −ζ < 0 and

(ii) F ′′(x) ≤ 0.

The conditions (i) and (ii) imply that F (x) has a unique root,
which corresponds to a unique solution ρs(ϕ) of (8). In order to
show (i), we treat two cases separately. First, if ζ < ∞, then the
smoothness of Z(ψ) leads to

lim
x→ζ

(∫ 2π

0

dψ

1 + κ

ωZ(ψ)x

)
= ∞

and, therefore, limx→ζ F (x) = −ζ. In the second case, when ζ =
∞, we use the following estimates: Since Z(ψ) is smooth and
Z(0) = 0, one can always find a large enough constant L > 0
such that

κ

ω
Z(ψ) ≤ LZ̃(ψ), Z̃(ψ) =

{
ψ, 0 ≤ ψ ≤ π

2π − ψ, π ≤ ψ ≤ 2π.

Now we estimate F (x) as follows

F (x) ≤
(∫ 2π

0

dψ

1 + LZ̃(ψ)x

)−1

− x

=
Lx

2 ln(1 + Lπx)
− x.

Hence limx→∞ F (x) = −∞.
Now let us show that (ii) holds. The second derivative of F (x)

can directly be calculated and reads

F ′′(x) = 2
(∫ 2π

0
gdψ

)−3

F1(x),

where g(ψ, x) =
(
1 + κ

ωZ(ψ)x
)−1

> 0, h(ψ) = κ

ωZ(ψ), and

F1 =
(∫ 2π

0
g2fdψ

)2

−
∫ 2π

0
g3f2dψ

∫ 2π

0
gdψ.

The sign ofF ′′ coincides with the sign ofF1.We apply the Cauchy-
Schwarz’s inequality to obtain

(∫ 2π

0
g2fdψ

)2

=
〈
g

1
2 , g

3
2 f
〉2

L2

≤
∥∥∥g 1

2

∥∥∥
L2

∥∥∥g 3
2 f
∥∥∥
L2

=
∫ 2π

0
g3f2dψ

∫ 2π

0
gdψ.

Thus, F1 ≤ 0 holds and claim (ii) is proven.
We have shown that the equation for the phase density for

the pulse-coupled system (8) has a unique stationary solution.
Note that smallness of κ was not assumed here. The first order
approximation in κ of this density takes the form (12).

A.1.2 SMOOTHLY COUPLED SYSTEMS (3) AND THEIR AVERAGED
COUNTERPART (4)

To unify notations, we write the dynamics for the single neurons
in the limit of large population as

ϕ̇ = ω + κK(ϕ, ρ(t, ·)),

where

K(ϕ, ρ(t, ·)) =

{
Z(ϕ)

∫ 2π
0 G(ξ)ρ(t, ξ)dξ, for (3),∫ 2π

0 H(ϕ− ξ)ρ(t, ξ)dξ, for (4).

The phase density equation reads

∂tρ(t, ϕ) = −∂ϕ [ρ(t, ϕ)(ω + κK(ϕ, ρs(·)))]

and its stationary solution ρs(ϕ) fulfills

C = ρs(ϕ)(ω + κK(ϕ, ρs(·))) (A.3)

with some constant C depending on ρs(·). Solving for ρs(ϕ) and
integration over [0, 2π] with respect toϕ gives an expression forC

C =
(∫ 2π

0

dψ

ω + κK(ψ, ρs(·))
)−1

.
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Substitution back into (A.3) yields

ρs(ϕ) =
[∫ 2π

0

ω + κK(ϕ, ρs(·))
ω + κK(ψ, ρs(·))dψ

]−1

=
1
2π

+ O(κ). (A.4)

We see that the stationary solution is generally a κ-
perturbation of the constant state. Without going into details,
we remark that for small κ the right hand side of (A.4)
is a contraction with respect to ρs(·) on all sets Mβ ={
f ∈ C ([0, 2π]) | f ≥ 0, ‖f‖1 = 1, ‖f‖∞ ≤ β

}
of all contin-

uous densities on [0, 2π] which are bounded by some β > 1
2π .

This implies that there is a unique stationary solution in this set,
which can be computed by iteration.

APPENDIX B
B.1 STABILITY OF SYMMETRIC CLUSTER STATES
In this section, we present a method for calculating characteris-
tic multipliers of the symmetric cluster states of system (1) (see
Sec. 2.2.3). To this end, we introduce a discrete time map (B.1)
which describes the system’s evolution in between two subsequent
spikes. The main idea of our analysis is a separation of the effects of
tangential and transversal perturbations to the cluster state. This
allows us to derive the expressions (B.3) and (B.5) for the char-
acteristic multipliers which can be evaluated easily. Finally, we
explain how these multipliers behave asymptotically as N → ∞.

Let us consider a time moment t0, when some neuron of
the ensemble (1) just emitted a spike. We choose its index to
be N and all other indices in such a way, that the phases are
ordered as 2π ≥ ϕ1(t+0 ) ≥ ... ≥ ϕN (t+0 ) = 0. Until the next
spiking event, all neurons advance with the same phase veloc-
ity ω. Without loss of generality, we can assume ω = 1. Then
the next neuron ϕ1 reaches the spiking threshold ϕ1(t−1 ) = 2π
at time t1 = t0 + 2π − ϕ1(t+0 ). The other neurons ϕk are now
located at ϕk(t

−
1 ) = ϕk(t

+
0 ) + 2π − ϕ1(t+0 ). After the spike, the

first neuron is reset to ϕ1(t+1 ) = 0 and all others to ϕk(t
+
1 ) =

μ(ϕk(t
−
1 )) = μ(ϕk(t

+
0 ) + 2π − ϕ1(t+0 )). Because of the mono-

tonicity of the resetting mapμ, the order of the phases is preserved
as 2π ≥ ϕ2(t+1 ) ≥ ... ≥ ϕN (t+1 ) ≥ ϕ1(t+1 ) = 0. We define the
firing map asF : T

N → T
N , T = [0, 2π] / {0 ∼ 2π} (the points

0 and 2π are identified as the same point) componentwise by

Fk(ϕ) := μ(ϕk+1 + 2π − ϕ1), 1 ≤ k ≤ N − 1, (B.1)

and FN (ϕ) := 0. It captures the threshold crossing and spiking
of the oscillator ϕ1 and shifts the indices k �→ k − 1. This map
takes the ordered phases after some spiking event 2π ≥ ϕ1 ≥
... ≥ ϕN = 0 and maps them to ordered phases after the suc-
cessive spiking event 2π ≥ F1(ϕ) ≥ ... ≥ FN (ϕ) = 0. Since we
assume the resetting function μ(ϕ) to be smooth on T, F is also
smooth on T

N .
TheN-fold iteration of the firing mapR := F ◦ ... ◦ F = FN

is called the return map. Given an initial state ϕ with ϕ1 ≥ ... ≥
ϕN , the map R(ϕ) returns the state after each neuron has fired
once. In order to simplify notations, we adopt double indices,
ϕ�,j := ϕ(�−1)n+j , to address the j-th member of the �-th clus-
ter. A stationary, symmetric m-cluster state is a fixed point ϕ∗ =

Fn(ϕ∗) for the n = N/m-th iterate of the firing map, which sat-
isfies ϕ∗

�,j = ψ� with 1 ≤ � ≤ m, 1 ≤ j ≤ n, and ordered cluster
positions 2π > ψ1 > ... > ψm = 0. For such a symmetric cluster
state, the time τ elapsed between two successive threshold cross-
ings of clusters is the same. This time τ can be determined as
the smallest solution of the equation Gm−1

τ (0) + τ = 2π. Here
the function Gτ (x) := μn(x + τ ) describes the phase resetting
of a neuron located at position x + τ induced by a cluster spike.
The value of Gm−1

τ (0) = Gτ ◦Gτ ◦ · · · ◦Gτ (0) is the position
of a cluster initially located at ψ = 0 after m− 1 other clus-
ters have fired. The positions of other clusters are then given as
ψ� = Gm−�

τ (0). The linear stability of the cluster state ϕ∗ can be
determined by its characteristic multipliers with respect to R, i.e.,
the eigenvalues of DR(ϕ∗). In the following we calculate these
multipliers. Using double indices for F in the same way as for ϕ,
we have

Fn�,j(ϕ
∗) = μn(ψ�+1 + 2π − ψ1) = ψ�,

where the index � + 1 is considered modulo 2π within the range
from 1 tom. For a perturbed cluster state, the phase of each neuron
can be written as ϕ�,j = ψj + η�,j . To study the dynamics of the
perturbations, we introduce the following subspaces

W =
m⋂
k=1

{
ηk,j = ηk,i, for 1 ≤ i, j ≤ n

}
,

V� =
⋂
k �=�

{
ηk,j = 0, for 1 ≤ j ≤ n

} ∩ {η�,n = 0} ,

1 ≤ � ≤ m. Elements of W correspond to perturbations, which
rule the relative motions of the clusters. Correspondingly, the sub-
space V� contain perturbations, which split the �-th cluster. Since
the perturbations from V� cannot split any other clusters, we have

Fn(ϕ∗ + η) ∈
{
ϕ∗ + W for η ∈ W,

ϕ∗ + V�−1 ⊕ W for η ∈ V�.

This implies

DFn(ϕ∗)V� ⊂ V�−1 ⊕ W, and DFn(ϕ∗)W ⊂ W. (B.2)

By m applications of the map DFn = DFn(ϕ∗), we obtain the
following sequence

V� DFn−−→ V�−1 ⊕ W DFn−−→ · · · DFn−−→V�−m ⊕ W = V� ⊕ W.

Hence, forDR(ϕ∗) = (DFn(ϕ∗))m, we have the skew structure
DR(ϕ∗)V� ⊂ W ⊕ V� and DR(ϕ∗)W ⊂ W . This implies that
the matrixDR(ϕ∗) has a block triangular form in an appropriate
basis and the spectrum of eigenvalues of DR(ϕ∗) is the union
of the spectra, which are restricted to the subspaces W and V�.
The eigenvalues belonging to the subspace V�, can be found by
considering all possible perturbations in V�. These perturbations
can be described as a linear combination of the following basis
vectors

ηik,j =

{
1, for k = �, 1 ≤ j ≤ i,

0, else,
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for 1 ≤ i ≤ n− 1. Each element ηi corresponds to a different way
to split the �-th cluster into two subclusters. It is possible to show
that the multiplier corresponding to ηi is given as the change of the
distance of these two subclusters during one return. Calculating
the perturbed dynamics step by step (from one cluster firing to the
next) and linearizing in ηi leads to

DR(ϕ∗)ηi = ληi + w

with somew ∈ W and the eigenvalue λ independent on � and i.

λ =
m∏
�=1

δ�, δ� = (μn)′(ψ� + 2π − ψ1). (B.3)

The perturbations in W can be described by the following basis
vectors

η�k,j =

{
1, for k = �, 1 ≤ j ≤ n

0, else.

Each element η� corresponds to a perturbation of the �-th cluster,
which does not split the cluster. Calculations (for brevity, we omit
the details here) of the dynamics of η� show that the eigenvalues
of DR(ϕ∗) restricted to W are given as the m-th powers of the
eigenvalues of the matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

−δ2 δ2 0 0

··
·

0
. . . 0

−δm ··
· . . . δm

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦ . (B.4)

This means that tangential multipliers of the symmetricm-cluster
state are given as λm where λ are the solutions of

det(A− λI) = 0. (B.5)

As explained in detail in (Lücken and Yanchuk, 2012), the repeti-
tive firingμn(ϕ) ≈ ϑ( 1

m , ϕ) can be approximated by the solution
ϑ( 1
m , ϕ) of the initial value problem

dϑ

dr
(r, ϕ) = κZ(ϑ(r, ϕ)), with ϑ(0, ϕ) = ϕ. (B.6)

Furthermore, we have

dϑ

dϕ

(
1
m
,ϕ

)
=

{
Z(ϑ( 1

m
,ϕ))

Z(ϕ) , for Z(ϕ) �= 0,

exp
(

κ

mZ
′(ϕ)

)
, for Z(ϕ) = 0.

(B.7)

This gives an asymptotic method to determine position and sta-
bility of m-clusters in the limit N → ∞ by determining the
quantities δ̄� = dϑ

dϕ

( 1
m , ψ̄� + 2π − ψ̄1

)
for the fixed point ψ̄ =

(ψ̄1, ..., ψ̄m), ψ̄1 > ... > ψ̄m = 0, of the asymptotic m-cluster
map F̄m : T

m → T
m, which is defined componentwise as

F̄m,�(ψ) = ϑ

(
1
m
,ψk+1 + 2π − ψ1

)
, 1 ≤ � ≤ m. (B.8)

This fixed point approximates the stationary, symmetricm-cluster
ϕ∗ in the limit of large N . The stability of ϕ∗ can be deter-
mined by replacing δ� with δ̄� in the expressions (B.3) and (B.4).
The asymptotic cluster positions ψ̄ can be determined from the
smallest solution τ of the equation Ḡm−1

τ (0) + τ = 2π, where
Ḡτ (ϕ) = ϑ

( 1
m , ϕ + τ

)
.

APPENDIX C
C.1 MODEL EQUATIONS
The dimensionless Morris-Lecar neuron model (Ermentrout,
1996; Sato et al., 2011) is given by the following equations

V̇ = I − gL(V − VL) − gKw(V − VK)

−gCam∞(V )(V − VCa),

ẇ = μλ(V )(w∞ − w),

with

m∞(V ) =
1
2

(
1 + tanh

(
V − V1

V2

))
,

w∞(V ) =
1
2

(
1 + tanh

(
V − V3

V4

))
,

λ(V ) =
1
3

cosh
(
V − V3

2V4

)
.

Parameters have been chosen according to references (Ermentrout,
1996; Sato et al., 2011) as VL = −0.5, VK = −0.7, VCa = 1.0,
gL = 0.5, gK = 2, gCa = 1.33, V1 = −0.01, V2 = 0.15, V3 =
0.1, V4 = 0.145, I = 0.0695 and μ = 0.25. We have obtained the
PRCZ(ϕ) = ZML(ϕ) for perturbations V �→ V + ΔV by direct
simulation for ΔV = 0.0025 and setting ZML(ϕ) = −2πΔT

TΔV ,
where T is the unperturbed period of the model and ΔT is the
asymptotic phase lag caused by the perturbation.
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